

FEATURES

-14-bit resolution
-5MHz minimum sampling rate
No missing codes over full HI-REL temperature range
Edge-triggered, no pipeline delay

- Low power, 2.95 Watts
- Small, 32-pin, ceramic TDIP package
- SMT package available

Excellent dynamic performance

- MIL-STD-883 screening or DESC SMD available

FEATURES
14-bit resolution
5MHz minimum sampling rate
No missing codes over full HI-REL temperature
range
Edge-triggered, no pipeline delay
Low power, 2.95 Watts
Small, 32-pin, ceramic TDIP package
SMT package available
Excellent dynamic performance
MIL-STD-883 screening or DESC SMD available

PRODUCT OVERVIEW

The low-cost ADS-944 is a high-performance, 14 -bit, 5 MHz sampling A/D converter. This device accurately samples fullscale input signals up to Nyquist frequencies with no missing codes. The dynamic performance of the ADS-944 has been optimized to achieve a THD of -77 dB and a SNR of 76 dB .

Packaged in a small, 32-pin TDIP, the functionally complete ADS-944 contains a fast-settling sample-hold amplifier, a subranging (two-pass) A/D converter, an internal reference, timing and control
logic, three-state outputs, and errorcorrection circuitry. Digital input and output levels are TTL.

Requiring $\pm 15 \mathrm{~V},+5 \mathrm{~V}$ and -5.2 V supplies, the ADS-944 typically dissipates 2.95 Watts. The unit is offered with a bipolar input range of $\pm 1.25 \mathrm{~V}$. Models are available in commercial (0 to $+70^{\circ} \mathrm{C}$), industrial (-40 to $+100^{\circ} \mathrm{C}$), or HI-REL (-55 to $+125^{\circ} \mathrm{C}$) operating temperature ranges. Typical applications include radar signal analysis, medical/ graphic imaging, and FFT spectrum analysis.

INPUT/OUTPUT CONNECTIONS			
PIN	FUNCTION	PIN	FUNCTION
1	+5V ANALOG SUPPLY	32	START CONVERT
2	$-5.2 V$ DIGITAL SUPPLY	31	BIT 1 (MSB)
3	ANALOG INPUT	30	BIT 1 (MSB)
4	ANALOG GROUND	29	BIT 2
5	OFFSET ADJUST	28	BIT 3
6	ANALOG GROUND	27	BIT 4
7	GAIN ADJUST	26	BIT 5
8	COMP. BITS	25	BIT 6
9	OUTPUT ENABLE	24	BIT 7
10	+5V DIGITAL SUPPLY	23	BIT 8
11	ANALOG GROUND	22	BIT 9
12	$+15 V ~ S U P P L Y ~$	21	BIT 10
13	$-15 V ~ S U P P L Y ~$	20	BIT 11
14	$-5.2 V$ ANALOG SUPPLY	19	BIT 12
15	DIGITAL GROUND	18	BIT 13
16	EOC	17	BIT 14 (LSB)

BLOCK DIAGRAM

Figure 1. ADS-944 Functional Block Diagram
DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

ABSOLUTE MAXIMUM RATINGS		
PARAMETERS	LIMITS	UNITS
+15 V Supply (Pins 12)	0 to +16	Volts
-15 V Supply (Pin 13)	0 to -16	Volts
+5 V Supply (Pins 1, 10)	0 to +6	Volts
-5 V Supply (Pin 2, 14)	0 to -6	Volts
Digital Input (Pin 8, 9, 32)	-0.3 to + VdD +0.3	Volts
Analog Input (Pin 3)	-5 to +5	Volts
Lead Temperature (10 seconds)	+300	${ }^{\circ} \mathrm{C}$

PHYSICAL/ENVIRONMENTAL				
PARAMETERS	MIN.	TYP.	MAX.	UNITS
Operating Temp. Range, Case				
ADS-944MC, MC-C	0	-	+70	${ }^{\circ} \mathrm{C}$
ADS-944ME, ME-C	-40	-	+100	${ }^{\circ} \mathrm{C}$
ADS-944MM, MM-C	-55	-	+125	${ }^{\circ} \mathrm{C}$
ADS-944/883, 883-C	-55	-	+125	${ }^{\circ} \mathrm{C}$
Thermal Impedance				
$\theta \mathrm{jc}$	-	7	-	${ }^{\circ} \mathrm{C} /$ Watt
өca	-	21	-	${ }^{\circ} \mathrm{C} /$ Watt
Storage Temperature Range	-65	-	+150	${ }^{\circ} \mathrm{C}$
Package Type	32-pin, metal-sealed, ceramic TDIP or SMT			
Weight	0.46 ounces (13 grams)			

FUNCTIONAL SPECIFICATIONS
minute warmup (1) unless otherwise specified.)
$\left(T_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \pm \mathrm{VCC}= \pm 15 \mathrm{~V},+\mathrm{VDD}=+5 \mathrm{~V}, \mathrm{VDD}=-5.2 \mathrm{~V}, 5 \mathrm{MHz}\right.$ sampling rate, and a minimum 3 minute warmup (1) un
$+25^{\circ} \mathrm{C}$
$\mathbf{O T O}+70^{\circ} \mathrm{C}$

	$+25^{\circ} \mathrm{C}$			$0 \mathrm{TO}+70^{\circ} \mathrm{C}$			$-55 \mathrm{TO}+125^{\circ} \mathrm{C}$			
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	-	± 1.25	-	-	± 1.25	-	-	± 1.25	-	Volts
Input Resistance	500	550	-	500	550	-	500	550	-	Ω
Input Capacitance	-	6	15	-	6	15	-	6	15	pF
DIGITAL INPUT										
Logic Levels										
Logic "1"	+2.0	-	-	+2.0	-	-	+2.0	-	-	Volts
Logic "0"	-	-	+0.8	-	-	+0.8	-	-	+0.8	Volts
Logic Loading "1"	-	-	+20	-	-	+20	-	-	+20	$\mu \mathrm{A}$
Logic Loading "0" (2)	-	-	-20	-	-	-20	-	-	-20	$\mu \mathrm{A}$
Start Convert Positive Pulse Width (3)	40	80	-	40	80	-	40	80	-	ns
STATIC PERFORMANCE										
Resolution	-	14	-	-	14	-	-	14	-	Bits
Integral Nonlinearity ($\mathrm{fin}=10 \mathrm{kHz}$)	-	± 0.75	-	-	± 0.75	-	-	± 1.0	-	LSB
Differential Nonlinearity (fin = 10kHz)	-0.95	± 0.5	+1.2	-0.95	± 0.5	+1.2	-0.95	± 0.5	+1.5	LSB
Full Scale Absolute Accuracy	-	± 0.15	± 0.4	-	± 0.15	± 0.4	-	± 0.4	± 1.1	\%FSR
Bipolar Zero Error (Tech Note 2)	-	± 0.1	± 0.3	-	± 0.1	± 0.3	-	± 0.3	± 0.9	\%FSR
Bipolar Offset Error (Tech Note 2)	-	± 0.2	± 0.4	-	± 0.2	± 0.4	-	± 0.3	± 1.2	\%FSR
Gain Error (Tech Note 2)	-	± 0.2	± 0.4	-	± 0.2	± 0.4	-	± 0.4	± 1.8	\%
No Missing Codes (fin $=10 \mathrm{kHz}$)	14	-	-	14	-	-	14	-	-	Bits
DYNAMIC PERFORMANCE										
Peak Harmonics (-0.5 dB)										
dc to 100 kHz	-	-85	-77	-	-85	-75	-	-81	-71	dB
100 kHz to 1 MHz	-	-78	-71	-	-78	-70	-	-75	-67	dB
1 MHz to 2.5 MHz	-	-75	-70	-	-75	-68	-	-71	-61	dB
Total Harmonic Distortion (-0.5 dB)										
dc to 100 kHz	-	-82	-76	-	-82	-74	-	-78	-70	dB
100 kHz to 1 MHz	-	-77	-70	-	-77	-70	-	-73	-65	dB
1 MHz to 2.5 MHz	-	-73	-68	-	-73	-65	-	-70	-60	dB
Signal-to-Noise Ratio (w/o distortion, -0.5 dB)										
dc to 100 kHz	73	76	-	73	76	-	71	75	-	dB
100 kHz to 1 MHz	73	76	-	73	76	-	71	75	-	dB
1 MHz to 2.5 MHz	73	75	-	73	75	-	71	75	-	dB
Signal-to-Noise Ratio (4) (\& distortion, -0.5 dB)										
dc to 100 kHz	71	75	-	71	75	-	68	73	-	dB
100kHz to 1 MHz	70	73	-	69	73	-	65	71	-	dB
1 MHz to 2.5 MHz	68	71	-	66	71	-	62	69	-	dB
Noise	-	135	-	-	135	-	-	135	-	$\mu \mathrm{Vrms}$
Two-Tone Intermodulation Distortion (fin $=2.45 \mathrm{MHz}, 1.975 \mathrm{MHz}$, fs $=5 \mathrm{MHz},-0.5 \mathrm{~dB}$)	-	-82	-	-	-82	-	-	-82	-	dB
Input Bandwidth (-3dB)										
Small Signal (-20dB input)	-	20	-	-	20	-	-	20	-	MHz
Large Signal (-0.5 dB input)	-	13	-	-	13	-	-	13	-	MHz
Feedthrough Rejection ($\mathrm{fin}=2.5 \mathrm{MHz}$)	-	90	-	-	90	-	-	90		dB
Slew Rate	-	± 110	-	-	± 110	-	-	± 110	-	V/ $/ \mathrm{S}$
Aperture Delay Time	-	+10	-	-	+10	-	-	+10	-	ns
Aperture Uncertainty	-	3	-	-	3	-	-	3	-	ps rms
S/H Acquisition Time (to $\pm 0.003 \% \mathrm{FSR}, 2.5 \mathrm{~V}$ step)	-	85	90	-	85	90	-	85	90	ns
Overvoltage Recovery Time (5)	-	200	-	-	200	-	-	200	-	ns
	5			5			5	-	-	MHz

	$+25^{\circ} \mathrm{C}$			$0 \mathrm{TO}+70^{\circ} \mathrm{C}$			$-55 \mathrm{TO}+125^{\circ} \mathrm{C}$			
DIGITAL OUTPUTS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Logic Levels										
Logic "1"	+2.4	-	-	+2.4	-	-	+2.4	-	-	Volts
Logic "0"	-	-	+0.4	-	-	+0.4	-	-	+0.4	Volts
Logic Loading "1"	-	-	-4	-	-	-4	-	-	-4	mA
Logic Loading "0"	-	-	+4	-	-	+4	-	-	+4	mA
Delay, Edge of ENABLE to Output Data Valid/InvalidOutput Coding	-	-	10	-	-	10	-	-	10	ns
	Offset Binary, Complementary Offset Binary, Two's Complement									
POWER REQUIREMENTS										
Power Supply Ranges ${ }^{6}$										
+15V Supply	+14.25	+15.0	+15.75	+14.25	+15.0	+15.75	+14.25	+15.0	+15.75	Volts
-15V Supply	-14.25	-15.0	-15.75	-14.25	-15.0	-15.75	-14.25	-15.0	-15.75	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.9	+5.0	+5.25	Volts
-5V Supply	-4.95	-5.2	-5.45	-4.95	-5.2	-5.45	-5.1	-5.2	-5.45	Volts
Power Supply Currents (7)										
+15V Supply	-	+36	+45	-	+36	+45	-	+36	+45	mA
-15V Supply	-	-17	-35	-	-17	-35	-	-17	-35	mA
+5V Supply	-	+173	+200	-	+173	+200	-	+173	+200	mA
-5.2V Supply	-	-167	-175	-	-167	-175	-	-167	-175	mA
Power Dissipation	-	2.5	3.1	-	2.5	3.1	-	2.5	3.1	Watts
Power Supply Rejection	-	-	± 0.05	-	-	± 0.05	-	-	± 0.05	\%FSR/\%V

Footnotes:

(1) All power supplies must be on before applying a start convert pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuously converting during this time.
(2) When COMP. BITS (pin 8) is low, logic loading " 0 " will be $-350 \mu \mathrm{~A}$ for this pin.
(3) An 80ns wide start convert pulse is used for all production testing. The start convert pulse should be between $40-80 \mathrm{~ns}$ or $130-160 \mathrm{~ns}$ to ensure proper operations. The latter range could be used for those applications requiring less than a 5 MHz sampling rate.
(4) Effective bits is equal to:

$$
\frac{(\text { SNR }+ \text { Distortion })-1.76+\left[20 \log \frac{\text { Full Scale Amplitude }}{\text { Actual Input Amplitude }}\right]}{6.02}
$$

TECHNICAL NOTES

1. Obtaining fully specified performance from the ADS-944 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are not connected to each other internally. For optimal performance, tie all ground pins (4, 6, 11, and 15) directly to a large analog ground plane beneath the package. Bypass all power supplies to ground with $4.7 \mu \mathrm{~F}$ tantalum capacitors in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitors. It is very important that the bypass capacitors be located as close to the unit as possible. Inductors or ferrite beads can also be used to improve the power supply filtering. Refer to Figure 4, the ADS-944 Evaluation Board Schematic, for more details.
2. The ADS-944 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figure 2. When using this circuitry, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.
3. Pin 8 (COMP. BITS) selects the ADS-944's digital output coding. When a logic "1" is applied to pin 8 , the output coding is complementary offset binary. When pin 8 has a logic " 0 " applied, the output coding becomes offset binary. The MSB output (pin 31) may be used under these conditions to achieve two's complement coding. Pin 8 is TTLcompatible and can be
(5) This is the time required before the A / D output data is valid after the analog input is back within the specified range.
(6) The minimum supply voltages of +4.9 V and -5.1 V for $\pm \mathrm{VDD}$ are required for $-55^{\circ} \mathrm{C}$ operations only. The minimum limits are +4.75 V and -4.95 V when operating at $+125^{\circ} \mathrm{C}$.
(7) Typical +5 V and -5.2 V current drain breakdowns are as follows:

$$
\begin{array}{ll}
+5 \text { VAnalog } & =+85 \mathrm{~mA} \\
+5 \mathrm{VDigital} & =+70 \mathrm{~mA}
\end{array} \begin{array}{ll}
-5.2 \text { VAnalog } & =-114 \mathrm{~mA} \\
+5 \mathrm{VTotal} & =+155 \mathrm{~mA}
\end{array} \quad-5.2 \mathrm{~V} \text { Votal }=-53 \mathrm{~mA}=-167 \mathrm{~mA} .
$$

CALIBRATION PROCEDURE (Refer to Figure 2 and Table 1)

Note: Connect pin 5 to ANALOG GROUND (pin 6) for operation without zero/offset adjustment. Connect pin 7 to ANALOG GROUND (pin 6) for operation without gain adjustment.

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit in Figure 2 are guaranteed to compensate for the ADS-944's initial accuracy errors and may not be able to compensate for additional system errors.

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.
For the ADS-944, offset adjusting is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is $+1 / 2$ LSB $(+76.3 \mu \mathrm{~V})$.

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0 . This transition ideally occurs when the analog input is at +full scale minus $1 \frac{1}{2}$ LSB's (+1.249771).
Note: Due to inherent system noise, the averaging of several conversions may be needed to accurately adjust both offset and gain to 1LSB of accuracy.

Zero/Offset Adjust Procedure

1. Apply a train of pulses to the START CONVERT input (pin 32) so the converter is continuously converting.
2. Apply $+76.3 \mu \mathrm{~V}$ to the ANALOG INPUT (pin 3).
3. Adjust the offset potentiometer until the output bits are 10000000000000 and the LSB flickers between 0 and 1 with pin 8 tied low (offset binary) or between 01111111111111 and 01111111111110 with pin 8 tied high (complementary offset binary).
4. Two's complement coding requires using BIT 1 (MSB) (pin 31). With pin 8 tied low, adjust the trimpot until the code flickers between 0000000000 0000 and 00000000000001.

Gain Adjust Procedure

1. Apply +1.249771 V to the ANALOG INPUT (pin 3).
2. Adjust the gain potentiometer until all output bits are 1's and the LSB flickers between 1 and 0 with pin 8 tied low (offset binary) or until all bits are 0 's and the LSB flickers between 1 and 0 with pin 8 tied high (complementary offset binary).
3. Two's complement coding requires using pin 31 . With pin 8 tied low, adjust the gain trimpot until the output code flickers equally between 011111 11111110 and 01111111111111.
4. To confirm proper operation of the device, vary the applied input voltage to obtain the output coding listed in Table 1.

Figure 2. ADS-944 Connection Diagram

ADS-944

OUTPUT CODING			INPUT RANGE	BIPOLAR
MSB	MSB LSB	$\overline{\text { MSB }}$ L LSB	$\pm 1.25 \mathrm{~V}$	SCALE
11111111111111	00000000000000	01111111111111	+1.249847	+FS -1 LSB
11100000000000	00111111111111	01100000000000	+0.937500	+3/4 FS
11000000000000	00111111111111	01000000000000	$+0.625000$	+1/2FS
10000000000000	01111111111111	00000000000000	0.000000	0
01000000000000	10111111111111	11000000000000	-0.625000	-1/2FS
00100000000000	11011111111111	10100000000000	-0.937500	-3/4FS
00000000000001	11111111111110	10000000000001	-1.249847	-FS +1 LSB
00000000000000	11111111111111	10000000000000	-1.250000	-FS
OFFSET BINARY	COMP. OFF. BIN.	TWO'S COMP.		

TIMING

The ADS-944 is an edge-triggered device. A conversion is initiated by the rising edge of the start convert pulse and no additional external timing signals are required. The device does not employ "pipeline" delays to increase its throughput rate. It does not require multiple start convert pulses to bring valid digital data to its output pins.
Approximately 10 ns after the rising edge of the start convert signal, the ADS-944's internal sample-hold amplifier is driven into the hold mode by the internal S / H control line. After a 35 ns delay to allow for S / H output transient settling, the conversion process begins, and the EOC line (pin 16) is driven high. The complete A/D conversion requires approximately 150ns. The falling of EOC signals that the conversion is now complete and digital output data is now valid.
This device actually guarantees that digital output data will be valid for 10 ns prior to the falling edge of EOC. Therefore, EOC can be used to latch data into external registers that have appropriate setup times. Any other available timing edges, including a delayed EOC or the rising edge of the next EOC pulse, can also be used for this purpose.
The falling edge of the start convert pulse, though irrelevant to device timing, can cause conversion errors if it occurs at certain times. Therefore, the recommended start convert pulse width is between 40 and 80 ns or between 130 and 160ns. DATEL performs ADS-944 production testing at the full 5 MHz sampling rate using 80ns start convert pulses.
(

Table 1. Output Coding

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ} \mathrm{C}$ and -55 to $+125^{\circ} \mathrm{C}$. All room-temperature ($\mathrm{TA}=+25^{\circ} \mathrm{C}$) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package.

Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

Note: Scale is approximately 10 ns per division.
(1) START CONVERT pulse width: 40 to 80 ns or 130 to 160 ns .

Figure 3. ADS-944 Timing Diagram

14-Bit, 5MHz Sampling A/D Converters

Figure 4. Typical ADS-944 Dynamic Performance vs. Input Frequency at $+25^{\circ} \mathrm{C}$

Figure 6. ADS-944 Histogram and Differential Nonlinearity

The histogram in Figure 8 represents the typical peak-to-peak noise (including quantization noise) associated with the ADS-944. 16.384 conversions were processed with the input to the ADS-944 tied to analog ground.

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION				
MODEL NUMBER	OPERATING TEMP. RANGE	PACKAGE	ROHS	ACCESSORIES
ADS-944MC	0 to $+70^{\circ} \mathrm{C}$	TDIP	No	ADS-B944 \quad Evaluation Board (without ADS-944)
ADS-944MC-C	0 to $+70^{\circ} \mathrm{C}$	TDIP	Yes	HS-32 Heat Sink for all ADS-944 DDIP models
ADS-944ME	-40 to $+100^{\circ} \mathrm{C}$	TDIP	No	Receptacles for PC mounting can be ordered through AMP Inc., Part \# 3-331272-8 (Component Lead Socket), 24 required. Contact DATEL for availability of surface-mount (J-lead) packaging or for MIL-STD-883 or DESC SMD product specifications.
ADS-944ME-C	-40 to $+100^{\circ} \mathrm{C}$	TDIP	Yes	
ADS-944MM	-55 to $+125^{\circ} \mathrm{C}$	TDIP	No	
ADS-944MM-C	-55 to $+125^{\circ} \mathrm{C}$	TDIP	Yes	
ADS-944MM-QL	-55 to $+125^{\circ} \mathrm{C}$	TDIP	No	
ADS-944MM-QL-C	-55 to $+125^{\circ} \mathrm{C}$	TDIP	Yes	
ADS-944/883	-55 to $+125^{\circ} \mathrm{C}$	TDIP	No	
ADS-944-C/883	-55 to $+125^{\circ} \mathrm{C}$	TDIP	Yes	
5962-9319801HXA	-55 to $+125^{\circ} \mathrm{C}$	TDIP	No	
5962-9319801HXC	-55 to $+125^{\circ} \mathrm{C}$	TDIP	No	
5962-9319803HXA	-55 to $+125^{\circ} \mathrm{C}$	TDIP	No	
5962-9319803HXC	-55 to $+125^{\circ} \mathrm{C}$	TDIP	No	

DATEL is a registered trademark of DATEL, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA ITAR and ISO 9001/14001 REGISTERED

DATEL, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

