


# JPS10 Series High Performance Solid State Relays For AC Loads up to 25A @ 250Vrms

### **Product Facts**

- Qualified to
  MIL-PRF-28750D (Mil Part Numbers M28750/10-001Y and M28750/10-002Y)
- Optically coupled all solid state relay
- **■** TTL compatible input
- Zero voltage turn-on for low EMI
- **■** Custom power package



The JPS10 series solid state relay is designed for AC power switching up to 25 amps at 250Vrms. The circuit employs back-to-back photo SCRs with zero voltage turn-on for reliable

Kilovac Part Number

JPS10-1Y

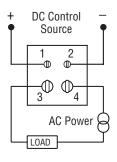
JPS10-2Y

switching of resistive or reactive loads. TTL compatible input circuitry is optically isolated to 1,500Vrms from the AC load circuit. The relay is offered in two versions: the JPS10-1Y with a maximum

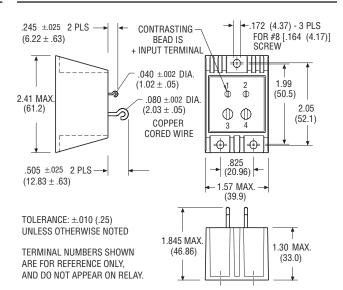
**Military Part Number** 

M28750/10-001Y

M28750/10-002Y


zero voltage turn-on window of 15 volts (preferred version for resistive loads), and the JPS10-2Y with a maximum window of 40 volts (preferred version for reactive loads).

| Zero Crossing Window |
|----------------------|
| 15 V pk max.         |


40 V pk max.

## **Circuit Diagram**

## **Terminal View**



#### **Outline Drawing**



www.te.com



# JPS10 Series High Performance Solid State Relays For AC Loads up to 25A @ 250Vrms (Continued)

## **Environmental Characteristics** Ambient Temperature Range —

Operating —  $-55^{\circ}$ C to  $+110^{\circ}$ C Storage —  $-55^{\circ}$ C to  $+125^{\circ}$ C

Vibration Resistance — 30 G's, 10-3,000 Hz

Shock Resistance -1,500 G's, 0.5 ms pulse

**Constant Acceleration Resistance** (Y1 axis) -

5,000 G's

# **Mechanical Characteristics**

Weight (max.) -6 oz. (170 grams)

Materials -

Case — Aluminum, hot tin dipped Terminals — Copper cored wire, gold

## Electrical Specifications (-55°C to +105°C unless otherwise specified)

| Input                                              |                         |  |
|----------------------------------------------------|-------------------------|--|
| Input supply voltage range (Vcc)                   | 4 - 32 Vdc              |  |
| Input current (max.)                               | 16mAdc                  |  |
| Must turn-on voltage                               | 4Vdc                    |  |
| Must turn-off voltage                              | 1Vdc                    |  |
| Reverse voltage protection                         | -32Vdc                  |  |
| 1/0                                                |                         |  |
| Dielectric strength (min.)                         | 1,500Vrms/60 Hz.        |  |
| Insulation resistance (min.) @ 500Vdc              | 10º ohms                |  |
| Capacitance (max.)                                 | 20pF                    |  |
| Output                                             |                         |  |
| Output current rating (max.)                       | 25Arms (Fig. 2, Note 1) |  |
| Surge current (max.)                               | 80A pk (Fig. 1, Note 2) |  |
| Continuous load voltage (max.)                     | 250Vrms                 |  |
| Transient blocking voltage (max.)                  | 500V pk                 |  |
| Frequency range                                    | 45 - 440 Hz.            |  |
| Output voltage drop (max.) @ 25A load current      | 1.5Vrms                 |  |
| Off-state leakage current (max.) @ 220Vrms/400 Hz. | 10mArms                 |  |
| Turn-on time (max.)                                | 1/2 cycle               |  |
| Turn-off time (max.)                               | 1 cycle                 |  |
| Off-state dv/dt (min.), with snubber               | 100V /µs (Note 3)       |  |
| Zero voltage turn-on window (max.), JPS10-1Y       | 15V pk                  |  |
| Zero voltage turn-on window (max.), JPS10-2Y       | 40V pk                  |  |
| Waveform distortion (max.)                         | 4Vrms                   |  |
| Output chip junction temperature (max.)            | 125°C (Note 4)          |  |
| Thermal resistance (max.), junction to ambient     | 6.8°C/W                 |  |
| Thermal resistance (max.), junction to case        | 1.2°C/W                 |  |
|                                                    |                         |  |

#### **Notes**

- 1. Operation at elevated load currents up to 25 amps is dependent on the use of suitable heatsink to maintain case temperature per Fig. 2.
- 2. Heating of output chips during and after a surge may cause loss of output blocking capability until junction temperature falls below maximum rating.
- 3. Internal snubber network is provided across output chips.
- 4. Case temperature measurement point is center of mounting surface.

Figure 1 - Peak Surge Current vs. Surge Current Duration

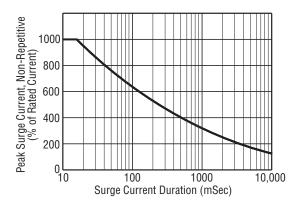
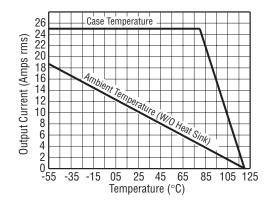




Figure 2 - Load Current vs. Temperature



www.te.com