

- Pletronics' LV77D Series is a quartz crystal controlled precision square wave generator with an LVDS output.
- The package is designed for high density surface mount designs.
- Low cost mass produced oscillator.
- Tape and Reel or cut tape packaging is available.
- 5 x 7 mm LCC Ceramic Package
- Enable/Disable Function on pad 1
- Disable function includes low standby power mode
- Low Jitter
- 80 MHz ~ 325 MHz

Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2011/65/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's Weight of the Device: 0.16 grams Moisture Sensitivity Level: 1 As defined in J-STD-020D.1 Second Level Interconnect code: e4

Absolute Maximum Ratings:

Parameter	Unit
V _{cc} Supply Voltage	-0.5V to +5.0V
Vi Input Voltage	-0.5V to V _{CC} + 0.5V
Vo Output Voltage	-0.5V to V _{CC} + 0.5V

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 30 to 50° C/Watt depending on the solder pads, ground plane and construction of the PCB.

February 2016

Part Number:

LV7	7 45	D	E	v	-125.0M	-xx		Part Marking:
							Packaging code or blank T250 = 250 per Tape and Reel T500 = 500 per Tape and Reel T1K = 1000 per Tape and Reel	PLE LV77 FF.FFF M • YMDXX
							Frequency in MHz	or LV7XYWWXX
							Supply Voltage V _{cc} V = 3.3V <u>+</u> 10%	FF.FFF M • PLE XXX
							Optional Enhanced OTR Blank = Temp. range -10 to +70°C C = Temp. range -20 to +70°C E = Temp. range -40 to +85°C	
							Series Model	
							Frequency Stability 45 = ± 50 ppm 44 = ± 25 ppm 20 = ± 20 ppm	
							Series Model	

Marking Legend:

PLE = Pletronics *FF.FFF* M = Frequency in MHz YYWW or YWW or Y*MD* = Date of Manufacture (year and week, or year-month-day) All other marking is internal factory codes

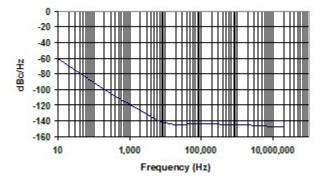
Specifications such as frequency stability, supply voltage and operating temperature range, etc. are not identified from the marking. External packaging labels and packing list will correctly identify the ordered Pletronics part number.

Code	s for	Date	Code	YMD														
Code	4	5	6	7	8	Code	Α	В	С	D	Е	F	G	Н	J	Κ	L	М
Year	2014	2015	2016	2017	2018	Month	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC

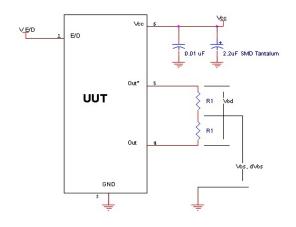
Code	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	G
Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Code	Н	J	К	L	М	Ν	Р	R	Т	U	V	W	Х	Y	Z	
Dav	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	

February 2016

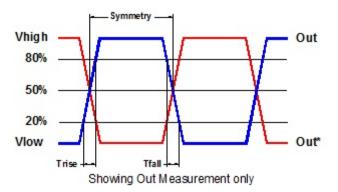
Electrical Specification for $3.30V \pm 10\%$ over the specified temperature range and the frequency range of 80 to 325 MHz


Item	Min	Max	Unit	Condition	
Frequency Accuracy "45"	-50	+50	ppm		voltages, load changes, aging for 1
"44"	-25	+25		year, shock, vi	ibration and temperatures
"20"	-20	+20			
Output Waveform		LVDS			
Output High Level		1.60	Volts	-	
Output Low Level	0.90		Volts	-	
Differential Output (V _{OD})	250	450	mVolts	-	See lead circuit $D1 = 50$ abms
Output Offset Voltage (Vos)	1.125	1.375	Volts	<u>></u> 80 MHz	See load circuit R1 = 50 ohms
	1.125	1.500	Volts	< 80 MHz	
Differential Output Error (dV_{os})		50	mVolts	-	
Output Symmetry	45	55	%	Referenced to	50% of amplitude or crossing point
Output T_{RISE} and T_{FALL}	300	700	pS	<u>></u> 80 MHz	Wth is 20% and 80% of waysform
	400	900	pS	< 80 MHz	Vth is 20% and 80% of waveform
Jitter	-	0.6	pS RMS	Measured from	n 12KHz to 20MHz from Fnominal
	-	2.8		Measured from	n 10Hz to 1MHz from Fnominal
Vcc Supply Current	-	66	mA	<u>></u> 80 MHz	Includes current of properly
	-	45	mA	< 80 MHz	terminated device
Enable/Disable Internal Pull-up	50	-	Kohm	To Vcc (equiva	alent resistance)
V disable	-	0.8	Volts	Referenced to	Ground
V enable	2.0	-	Volts	Referenced to	Ground
Output leakage V _{OUT} = V _{CC}	-10	+10	uA	Pad 1 low, dev	vice disabled
V _{OUT} = 0V	-10	+10	uA		
Enable time	-	2	mS	Time for output	It to reach a logic state
Disable time	-	200	nS	Time for output	it to reach a high Z state
Start up time	-	5	mS	<u>></u> 80 MHz	Measured from the time
	-	3	mS	< 80 MHz	Vcc = 3.0V
Operating Temperature Range	-10	+70	°C	Standard Tem	perature Range
	-20	+70	°C	Extended Terr	perature Range "C" Option
	-40	+85	°C	Extended Tem	perature Range "E" Option
Storage Temperature Range	-55	+125	°C		
Standby Current I _{cc}	-	3	uA	<u>></u> 80 MHz	Ded 1 low dovice dischlad
	-	1.5	mA	< 80 MHz	Pad 1 low, device disabled

Specifications with Pad 1 E/D open circuit



February 2016



Load Circuit

February 2016

Reliability: Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition B
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

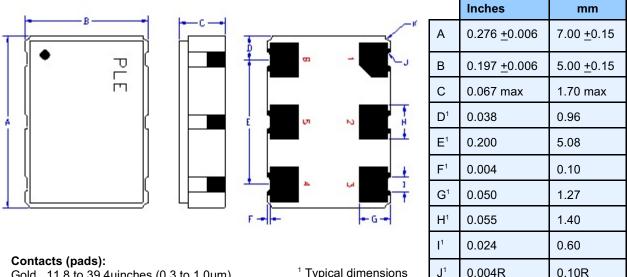
ESD Rating

Model	Minimum Voltage	Conditions
Human Body Model	1500	MIL-STD-883 Method 3115
Charged Device Model	1000	JESD 22-C101

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Courier New Bar code is 39-Full ASCII

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial


RoHS Compliant

2nd LvL Interconnect Category=e4 Max Safe Temp=260C for 10s 2X Max

February 2016

Mechanical:

Gold 11.8 to 39.4µinches (0.3 to 1.0µm) over Nickel 50 to 350 µinches (1.27 to 8.89 µm)

¹ Typical dimensions

 K^1

0.008R

0.20R

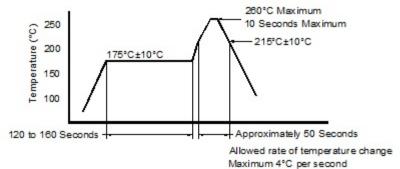
Lead Free 🕯

Not to Scale

Pad	Function	Note
1	Output Enable/Disable	When this pad is not connected the oscillator shall operate. When this pad is <0.30 volts, the output will be inhibited (high impedance state.) Recommend connecting this pad to V_{cc} if the oscillator is to be always on.
2	No connect	There is no internal connection to this pad
3	Ground (GND)	
4	Output	The outputs must be terminated, 100 ohms between the outputs is the ideal
5	Output*	termination.
6	Supply Voltage (V _{cc})	Recommend connecting appropriate power supply bypass capacitors as close as possible.

Layout and application information

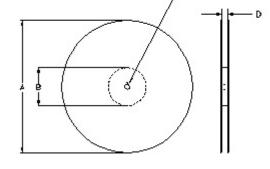
Recommend connecting Pad 1 and Pad 2 together to permit the design to accept Enable/Disable on both input pads

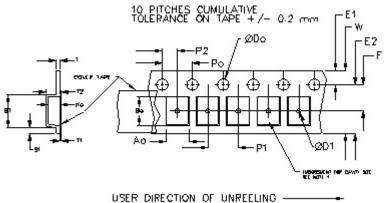

For Optimum Jitter Performance, Pletronics recommends:

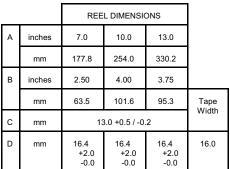
- a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device
- do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.

February 2016

Reflow Cycle (typical for lead free processing)


The part may be reflowed 3 times without degradation.


Tape and Reel: available for quantities of 250 to 1000 per reel, cut tape for < 250


	Constant Dimensions Table 1							
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max
8mm		1.0			2.0			
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05			
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1
24mm		1.5			<u>+</u> 0.1			

			V	ariable Dimer	isions Table	2		
Ta Si:	pe ze	B1 Max	E2 Min	F	P1	T2 Max	W Max	Ao, Bo & Ko
16	mm	12.1	14.25	7.5 <u>+</u> 0.1	8.0 <u>+</u> 0.1	8.0	16.3	Note 1

Note 1: Embossed cavity to conform to EIA-481-B Dimensions in mm Not to scale

Reel dimensions may vary from the above

February 2016

IMPORTANT NOTICE

Pletronics Incorporated (PLE) reserves the right to make corrections, improvements, modifications and other changes to this product at anytime. PLE reserves the right to discontinue any product or service without notice. Customers are responsible for obtaining the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to PLE's terms and conditions of sale supplied at the time of order acknowledgment.

PLE warrants performance of this product to the specifications applicable at the time of sale in accordance with PLE's limited warranty. Testing and other quality control techniques are used to the extent PLE deems necessary to support this warranty. Except where mandated by specific contractual documents, testing of all parameters of each product is not necessarily performed.

PLE assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using PLE components. To minimize the risks associated with the customer products and applications, customers should provide adequate design and operating safeguards.

PLE products are not designed, intended, authorized or warranted to be suitable for use in life support applications, devices or systems or other critical applications that may involve potential risks of death, personal injury or severe property or environmental damage. Inclusion of PLE products in such applications is understood to be fully at the risk of the customer. Use of PLE products in such applications requires the written approval of an appropriate PLE officer. Questions concerning potential risk applications should be directed to PLE.

PLE does not warrant or represent that any license, either express or implied, is granted under any PLE patent right, copyright, artwork or other intellectual property right relating to any combination, machine or process which PLE product or services are used. Information published by PLE regarding third-party products or services does not constitute a license from PLE to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from PLE under the patents or other intellectual property of PLE.

Reproduction of information in PLE data sheets or web site is permissible only if the reproduction is without alteration and is accompanied by associated warranties, conditions, limitations and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. PLE is not responsible or liable for such altered documents.

Resale of PLE products or services with statements different from or beyond the parameters stated by PLE for that product or service voids all express and implied warranties for the associated PLE product or service and is an unfair or deceptive business practice. PLE is not responsible for any such statements.

Contacting Pletronics Inc.

Pletronics Inc. 19013 36th Ave. West Lynnwood, WA 98036-5761 USA Tel: 425-776-1880 Fax: 425-776-2760 E-mail: <u>ple-sales@pletronics.com</u> URL: www.pletronics.com

Copyright © 2006, 2007, 2010, 2011, Pletronics Inc.

PLETRONICS INC. DOCUMENT CONTROL

This is the document control page. **This is not printed or part of the PDF that can be downloaded on the web site.** This is to keep the history of the datasheet document and all revisions.

Part Number Family:	LV77D
Document File Name:	LV77D 3.3V.wpd
PDF File Name:	LV77D 3.3V.pdf
Written By:	R Gubser
Approved By:	Melody Mistlin and Claude Lee after sales and engineering group
	review.

This specification was written around the NPC IC CF5037 for ≥ 80 MHz and Anasem IC AS148xx for < 80 MHz and data taken at PLE about its performance.

Revision History:	
April 2005	Initial Release
June 2005	Added dual voltage marking code B, added IC code, deleted substitute
	note
Jan 2006	Added 1-80 MHz specs per Anasem IC, updated to new process label &
	important notice
Sept 2006	Updated marking page, RoHS label & mech shock & jitter to .6 from .15
Oct 2006	Added T250, etc. Changed height from 1.87 to 1.70 max
Dec 2006	Deleted Frequency range
April 2007	Changed std OTR to -10 from 0 on part number and table
January 30, 2010	Added the limited frequencies available at <=80MHz
	Added a maximum thickness to the gold on the package rag
April 26, 2010	Added the "C" temperature range, Added 3 times reflow rag
January 28, 2011	Changed the upper frequency to 325MHz Rag
February 28, 2014	Lower frequency changed to 80MHz (removed table of frequencies < 80).
	Changed enable/disable times to 2ms/200ns.
July 6, 2015	Corrected typo in gold thickness on mechanical pages (39.4
	uinches from 29.4) Typo, MM DK
February 3, 2016	Updated date code range. Lower frequency on electrical
	specification page changed from 1 to 80.